High Quality Resuscitation & The 2015 AHA Guidelines

Ontario Base Hospital Group

Introduction

- This module will identify best practices for resuscitation for PCPs and ACPs in Ontario according to the 2015 AHA Guidelines.
- The Ontario Basic Life Support Patient Care Standards (BLSPCS) & Advanced Life Support Patient Care Standards (ALSPCS) are both being updated to reflect these guidelines.

PULSE CHECKS

CAB

No > 10 seconds
Including hypothermic patients
Palpate pulse just prior to rhythm check

EARLY DEFIB

Place pads during CPR
Minimize CPR interruption
Unless known/suspected FBAO...
place pads and check rhythm
BEFORE OPA-PPV

RATE

Adult / Pediatric / Infant

100 – 120 CPM

Optimal is 110 CPM

AHA 2015 introduced upper limit

Excessive rates may
adversely affect outcomes

DEPTH

Adult 2" (5 cm) – 2.4" (6 cm) Child-Infant 1/3 diameter of chest

AHA 2015 introduced upper limit Excessive depths may adversely affect outcomes

RECOIL

ALLOW FULL CHEST RECOIL Don't lean on chest after compression

Promotes venous return and Cardiopulmonary blood flow

CPR:PPV RATIO

WITHOUT advanced airway

Adult 30:2

Child-Infant 30:2 / 15:2

WITH advanced airway

continuous compressions

AVOID EXCESSIVE VENTILATIONS

PPV RATE w/SGA-ETI?

Adult / Pediatric / Infant 1 PPV q6s 10 PPV per minute

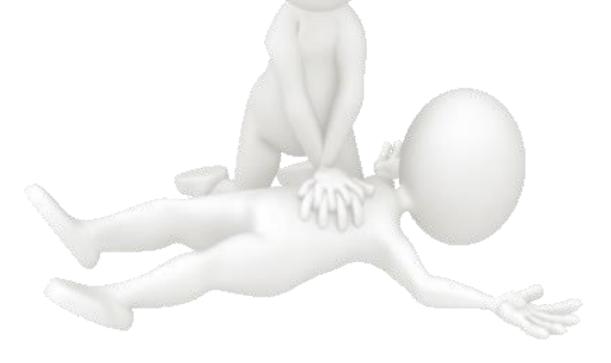
AHA 2015 introduced single rate Easier to learn, remember and perform rather than range of bpm

TIME ON THE CHEST

MINIMIZE CPR INTERRUPTION place pads during CPR check pulse prior to rhythm analysis smooth compressor transitions timing of patient movement - stretcher **ETI during CPR**

TIME ON THE CHEST

MINIMIZE PERI-SHOCK PAUSE
Compressions during charging
Have next compressor in ready position
NO PULSE CHECKS AFTER DEFIBRILLATION


Realtime CPR Feedback

Use metronome & visual feedback devices

Feedback improves survival

Oxygenation

Use 100% 02 during CPR

EtCO2

Guide for chest compression quality AIM for EtCO2 > 20**Identify ROSC** Abrupt increase - Don't stop CPR **Determine futility – TOR** EtCO2 < 10 after 20 min CPR not good

ACLS

If in cardiac arrest – give epinephrine ASAP

Anti-arrhythmics ASAP if shockable rhythm

Mechanical CPR

Manual chest compressions Remains the standard of care

Mechanical CPR devices reasonable in transport & other challenging circumstances

Special Considerations

Manual Left Uterine Displacement For CPR in pregnant patients

Minimal scene time for pregnant Cardiac arrest patient with Potentially viable fetus

ARREST SUMMARY

Pulse checks no > 10 seconds Rate 100-120 (optimal 110) Depth 5-6 cm Allow full recoil Ratio 30:2 without advanced airway Maximize time on the chest Reduce peri-shock pause **Use EtCO2**

ROSC CARE

Refocus on A-B-C's
Raise HOB 30°

Oxygenate for SpO2 ≥ 94%
Ventilate for EtCO2 35-40

ROSC CARE

Fluid Bolus PRN – SBP > 90 MAP >65
Dopamine PRN – SBP > 90 MAP >65
12 Lead ECG – PCI Lab if indicated

ROSC LIDOCAINE?

Initiation or continuation may be considered immediately after ROSC

AHA 2015 introduced consideration

May decrease recurrent VF/pVT

TTM?

Prevent hyperthermia Routine cooling not recommended

AHA 2015 introduced wider range 32°C to no better than 36°C

ACS incl STEMI

Early 12 Lead ECG
Computer analysis as an adjunct
To paramedic interpretation

Avoid hypoxia & hyperoxia - SP02 >94%

Naloxone

BLS priorities remain focus

No quality CPR = ineffective drug delivery

Summary

ROSC – ABC's SP02 94-99% **EtC02 35-40mmHg** No Hypothermia Early 12 Lead in ACS & ROSC High quality CPR priority in opiod OD